Optimal residual algorithms for linear operator equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

Index theory for linear self-adjoint operator equations and nontrivial solutions for asymptotically linear operator equations

We will first establish an index theory for linear self-adjoint operator equations. And then with the help of this index theory we will discuss existence and multiplicity of solutions for asymptotically linear operator equations by making use of the dual variational methods and Morse theory. Finally, some interesting examples concerning second order Hamiltonian systems, first order Hamiltonian ...

متن کامل

A Preconditioned Minimal Residual Solver for a Class of Linear Operator Equations

We consider the class of linear operator equations with operators admitting self-adjoint positive definite and m-accretive splitting (SAS). This splitting leads to an ADI-like iterative method which is equivalent to a fixed point problem where the operator is a 2 by 2 matrix of operators. An infinite dimensional adaptation of a minimal residual algorithm with Symmetric Gauss-Seidel and polynomi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 1991

ISSN: 0885-064X

DOI: 10.1016/0885-064x(91)90003-g